Development and Flight Test of In Situ Turbulence and Situ Turbulence Algorithms

Paul A. Robinson

AeroTech Research (USA), Inc. Hampton, VA 23666

2nd Weather Accident Prevention Annual Project Review Cleveland, OH, June 5-7, 2001

AeroTech's Task Areas

- Develop, implement, and test in situ algorithms on NASA B-757 Research Aircraft;
 - > 3-D wind & turbulence recovery
 - atmospheric/meteorological diagnostics
 - distributed load analysis
 - hazard metric for radar
- Data analysis of flight test data
- Support radar algorithm development

Algorithm Development Process

Define algorithm specifications and requirements

Develop code and implement in NASA 757 simulator.

Verify operation & incorporate results in flight code.

Implement and "shakedown" test on B-757 aircraft

Fly in turbulence

NASA B-757 Turbulence Flight Experiment Setup

Flight Deck Research
Station

Transport Research System (TRS)

RMS Normal Load - Flight 191

Flight Conditions: R191-06

Vertical Gust and R.M.S. Vertical Gust (σ_{Wg})

Correlation of Peak Load With Peak RMS Load (5 sec. window)

Based on Measurements for 34 Turbulence Encounter Cases

Comparison of RMS Lateral Accelerations Between Forward and Aft of Aircraft

Future Work

Continue flight test of algorithms

Support fleet implementation of NCAR algorithm

Continue radar algorithm development support including certification process